
EVALUATING GENERATIVE
AI DRUMBEATS ON

GUITAR TRACKS
-Kabir Gupta & Anoushka Yadav

Creating music is often a collaborative process, but many guitarists—
whether solo artists, independent musicians, or members of small bands—
lack access to a dedicated drummer.

This limitation makes it difficult for them to compose full arrangements,
practice effectively, or record high-quality tracks.

PROBLEM STATEMENT
2

PROPOSAL & IMPACT
A ML model that is capable of producing a drum track for an input guitar
track.
Democratizes music production by providing independent musicians and
small bands access to high-quality drum tracks without needing a full band
or professional studio.
Saves time and reduces costs, allowing artists to focus on their
compositions rather than technical barriers.
Bridges the gap between creative vision and production reality, enabling
artists to bring their musical ideas to life.

3

POTENTIAL APPLICATIONS
4

Music Composition: Enable guitarists to create full-band
arrangements quickly without needing advanced technical
expertise or additional resources.
Practice & Jamming: Generate dynamic drum tracks for
practice sessions, offering a more immersive and productive
experience.
Recording & Production: Provide independent musicians and
small studios with professional-quality drum tracks without
the cost and complexity of hiring a live drummer.
Live Performance: Act as a virtual drummer for solo artists
during live shows, enhancing the performance with adaptive
and high-quality drum accompaniment.

5

1. Manually programming drum tracks in DAWs is time-
consuming.

2. Pre-recorded loops lack adaptability and dynamic
nuances.

3. Traditional methods often fail to capture the
originality of compositions.

4. Hiring session drummers can be costly.
5. Professional drum recording services may be

impractical for independent musicians.

DRAWBACKS OF TRADITIONAL METHODS

LITERATURE REVIEW

Giorgio Barnabò, Giovanni Trappolini, Lorenzo Lastilla, Cesare
Campagnano, Angela Fan, Fabio Petroni, Fabrizio Silvestri.

CycleDRUMS: Automatic Drum Arrangement For Bass Lines Using
CycleGAN.

CycleGAN struggles with capturing long-range
dependencies

1. CycleGAN operates on short 5-second mel-
spectrograms, treating them as static
image-like representations rather than
sequential data.

2. Because it does not maintain memory
across segments, it fails to capture
overarching musical structures like
transitions between verses, choruses, and
fills.

Wu, Y.-K., Chiu, C.-Y., & Yang, Y.-H. (2022). JukeDrummer: Conditional Beat-
Aware Audio-Domain Drum Accompaniment Generation via Transformer

VQ-VAE. In Proceedings of the 23rd International Society for Music
Information Retrieval Conference (ISMIR), Bengaluru, India.

1. The input data (MIDI-like events)
represents drum hits as discrete symbols.
Fine-grained timing variations (micro-
timing, rubato, accelerando) are not
explicitly captured.
As a result, the model may generate rigid
patterns that fail to adapt to tempo
fluctuations in different song sections.

The ML Model uses a 2-bar attention span in the
Transformer-based drum accompaniment model
limits its ability to recognize long-term musical
structures like verses and choruses, leading to

repetitive, disjointed patterns. Since Transformers
process input in fixed-length windows and lack

recurrence, the model does not retain memory of
previous sections.

Haki, B., Nieto, M., Pelinski, T., & Jordà, S. (2022). Real-Time Drum Accompaniment Using
Transformer Architecture. In Proceedings of the 3rd Conference on AI Music Creativity

(AIMC), Barcelona, Spain.

10
GAP

1. Models tend to give repetitive patterns.
2. Most models struggle to maintain long-term coherence and

structural integrity in generated music.
3. Current research models display an inability to generate

creative fills and dynamics which fit the structure of the song.
4. Models often perform poorly in complex genre’s such as rock,

metal, and jazz.
5. Many models require MIDI input, which represents music as

discrete events without capturing continuous audio nuances,
timbre, or symbolic expressions, leading to limitations in
realism, timing accuracy, and musical depth.

DRAWBACKS OF AI/ML MODELS

DATABASE
 SCARCITY

REPETITIVE
OUTPUT

COHERENCE
ISSUES

GENRE
DEPENDENCY

BIAS
LIMITATION

ORIGINALITY
CONSTRAINTS

DATASET COLLECTION &
AUGMENTAION

11

Pitch Shifting: Shifted pitch by -2 to 2
semitones using librosa
Time Stretching & Speed Variation: Altered
playback speed by 0.8 to 1.2 times with pydub
Partial Masking (SSM-specific): Randomly
mask small sections of the Guitar SSM to
encourage the model to infer missing
rhythmic cues — useful for complex
transitions.

 710 rock/metal
songs (.wav)

13

DATA PREPROCCESSING
Audio Preprocessing

Audio separation into drum.wav and guitar.wav using demucs.
Trimming Silence: If silence is present, remove silent parts to focus
on relevant content, otherwise remove trailing part.
Normalization: Ensure consistent audio amplitude levels.

14
FEATURE EXTRACTION

1. Mel Spectrogram Generation
Short-Time Fourier Transform (STFT): Converts audio to the frequency domain:

Instead of analyzing the entire signal at once, STFT applies a sliding window
(2048 samples ≈ 46ms at 44.1kHz sample rate) across the signal.
Each frame is overlapping (512 samples step size/hop length) to maintain smooth
transitions.

2. Self-Similarity Matrix (SSM) Computation
Calculate SSM: Measure similarity between Mel spectrogram frames
Using cosine similarity

15

(Source separation using Demucs)

16

SELF SIMILARITY MATRIX

SOLUTION ENHANCEMENT STRATEGY

18

1

2

3

Custom Dataset Creation: Extracts drum and guitar components from existing tracks
to expand paired training data.

SSM Integration: Provides explicit structural information about repeated sections
and transitions, ensuring generated drum patterns align with the song's structure.

Transformer Capabilities: Excels at capturing long-term dependencies in sequences,
maintaining coherence across extended musical compositions.

SSM+Transformer+Vocoder

ML MODELS

EVALUATION

20

MAE: Measures the average absolute difference between predicted and true
values.
MSE: Measures the average of squared differences, penalizing larger errors
more heavily.
Cosine Similarity: Measures the directional similarity between the predicted
and true spectrogram vectors.
SSIM: Measures perceptual similarity by comparing structural patterns and local
contrasts in two images.

SimpleTransformer

MODEL 1 21

Predicts drum Mel spectrogram and SSM from guitar Mel spectrogram and SSM
Treats input as a 2-channel image

Channel 1 = Guitar Mel
Channel 2 = Guitar SSM

Uses a shallow Transformer encoder over flattened image features

Data Handling
Input/Output Shapes

Input → 2 × 128 × 128 (Guitar Mel + Guitar SSM)
Output → 2 × 128 × 128 (Drum Mel + Drum SSM)

Preprocessing Steps
Load full song Mel and SSM files
Resize to 128 × 128 using adaptive_avg_pool2d
Normalize each sample with min-max scaling

22

SimpleTransformer

MODEL 1

Limitations
No segmenting
 → Entire song compressed into a single 128×128 frame, aggressive downsampling
may blur transients, fills, or quick changes
 → Loses temporal progression and rhythmic development
No modality-specific branches
 → Guitar Mel and SSM passed through a shared encoder
 → Fails to capture distinct structural vs spectral patterns
No positional encoding
 → Transformer receives tokens without time/frame context
 → Reduces ability to model global structure or rhythmic alignment

MODEL 1

DrumTransformer (Segment-wise, Dual-Encoder)

24

Predicts drum Mel spectrogram and SSM from guitar Mel spectrogram and SSM
Uses separate convolutional encoders for Mel and SSM
Combines them using positional encoding
Passes through a transformer encoder
Outputs predicted Mel + SSM via two separate decoder heads

Data Handling (Preprocessing Steps)
Segmented Input Strategy -Extract segments using a sliding window
Each full-length song is split into overlapping segments:

30-second intervals
22-second stride

~1280-frame windows downsampled to 128 × 128 using adaptive_avg_pool2d
Normalize each segment with min-max scaling

MODEL 2

25
MODEL 2

Limitations
Fixed input resolution (128×128) still imposes compression → may blur fast
drum events
Adaptive pooling discards high-resolution structure → prevents the model
from learning how to downsample
Prediction compresses 30 seconds of audio into 128 frames → leads to
temporal resolution loss
No decoder recurrence — each segment is processed independently,
ignoring global song context

DrumTransformer (Segment-wise, Dual-Encoder)

MODEL 2

DrumTransformer (Input mel - 128*T - 15s Segments, SSM-Guided)

27

Predict the Mel spectrogram of the drum track of size (128*T) using:
Guitar’s Mel spectrogram (128*T) → CNN → Tokens
Guitar’s Self-Similarity Matrix (SSM) → Interp to 64×64 → CNN → Tokens
Concat → Positional Encoding → Transformer → Linear → Drum Mel (128×T)

Data Handling (Preprocessing Steps)
Splits full-length tracks into:

15-second segments (~128 frames)
With 11-second stride (~64 frames)

Feeds each segment to the model one by one
Improves training diversity by covering full song with overlap

MODEL 3

28

SSM Downsampling via Interpolation
Each 15 secs SSM → downsampled to 64×64
Uses F.interpolate with bilinear mode
Provides structural cues to the mel spectogram while cutting computation

Dual CNN-Based Encoders
Separate encoders for:

Guitar Mel spectrogram
Guitar SSM

Learns modality-specific features:
Local spectral patterns (Mel)
Structural repetition and form (SSM)

MODEL 3

DrumTransformer (Input mel - 128*T - 15s Segments, SSM-Guided)

29

Transformer with Positional Encoding
Outputs from both encoders are:

Flattened → Tokenized
Concatenated → Combined into one sequence

Uses sinusoidal positional encoding
Passed to Transformer Encoder for joint modeling of:

Temporal progression (Mel)
Structural alignment (SSM)

MODEL 3

DrumTransformer (Input mel - 128*T - 15s Segments, SSM-Guided)

CHALLENGES
Limited Paired Dataset

The availability of cleanly paired guitar and drum tracks was limited,
restricting the model’s generalization capacity.

Manual preprocessing (e.g., Mel spectrograms, SSMs) further reduced
usable data due to noise or alignment issues.
High Memory Footprint of Transformers

Processing full-resolution spectrograms (128×T) and especially SSMs
(T×T, e.g., 1250×1250) consumed excessive GPU memory.
Standard self-attention scales quadratically with input size, limiting
batch sizes and input length.

CHALLENGES
Segmented Training Trade-offs

Dividing audio into smaller chunks (e.g., 128×128 Mel frames) helped
reduce memory usage but introduced discontinuities at segment
boundaries, harming temporal consistency.

Inefficient SSM Encoding
Patch-based encoding for SSMs caused memory overflows on GPU.
Switching to interpolation-based downsampling helped but reduced
structural detail fidelity.

Long Training Times
Due to large input sizes and model complexity, training even for a few
epochs required long runtimes, discouraging iterative experimentation.

32
DEPLOYMENT

 Jam Assistance: Automatically adds expressive drum tracks to solo
guitar performances, making solo jamming feel like a full-band
experience.
Practice: Generate dynamic drum tracks for practice sessions.
Give the drummer a basic groove to build on when there’s a creative
block.
Songwriting Aid: Provides a foundational drum layer to help composers
sketch new song ideas quickly and intuitively.
Can be deployed as a web app, Jupyter interface, or DAW plugin for ease
of access.

33

SCALING CHALLENGES
High GPU memory usage due to large Mel and SSM input sizes (e.g., 128×T,
T×T).
Splitting songs into overlapping segments increases inference time.
Real-time inference is not yet supported; model optimization may be
needed.
Limited dataset generalization — the model is trained on clean rock/metal
tracks and may underperform on noisy or genre-diverse input.
Handling large .npy files for Mel and SSM features at scale can lead to
significant disk, RAM, and I/O bandwidth pressure.

THANK YOU

