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PROBLEM STATEMENT

Creating music is often a collaborative process, but many guitarists—
whether solo artists, independent musicians, or members of small bands—
lack access to a dedicated drummer.

This limitation makes it difficult for them to compose full arrangements,
practice effectively, or record high-quality tracks.




PROPOSAL & IMPACT

e AML model that is capable of producing a drum track for an input quitar
track.

 Democratizes music production by providing independent musicians and
small bands access to high-quality drum tracks without needing a full band
or professional studio.

e Saves time and reduces costs, allowing artists to focus on their
compositions rather than technical barriers.

e Bridges the gap between creative vision and production reality, enabling
artists to bring their musical ideas to life.
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POTENTIAL APPLICATIONS

e Music Composition: Enable guitarists to create full-band
arrangements quickly without needing advanced technical
expertise or additional resources.

e Practice & Jamming: Generate dynamic drum tracks for
practice sessions, offering a more immersive and productive
experience.

e Recording & Production: Provide independent musicians and
small studios with professional-quality drum tracks without
the cost and complexity of hiring a live drummer.

e Live Performance: Act as a virtual drummer for solo artists
during live shows, enhancing the performance with adaptive
and high-quality drum accompaniment.




DRAWBACKS OF TRADITIONAL METHODS

I.Manually programming drum tracks in DAWs is time-

consuming.

2.Pre-recorded loops lack adaptability and dynamic
nuances.

3.Traditional methods often fail to capture the
originality of compositions.

4.Hiring session drummers can be costly.

5.Professional drum recording services may be
impractical for independent musicians.
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BEEE TRAMSACTIONS ON MULTIMEDLA

CycleDRUMS: Automatic Drum Arrangement For
Bass Lines Using CycleGAN

Giorgio Bamabd, Giovanni Trappelini, Lorenzo Lastilla, Cesare Campagnano, Angela Fan, Fabio Petron,
and Fabrizio 5ilvestr

CycleGAN struggles with capturing long-range
dependencies

l.CycleGAN operates on short 5-second mel-
spectrograms, treating them as static

image-like representations rather than
sequential data.

2.Because it does not maintain memory
across segments, it fails to capture
overarching musical structures like

transitions between verses, choruses, and
fills.

Giorgio Barnabo, Giovanni Trappolini, Lorenzo Lastilla, Cesare
Campagnano, Angela Fan, Fabio Petroni, Fabrizio Silvestri.

CycleDRUMS: Automatic Drum Arrangement For Bass Lines Using

CycleGAN.

distribution of predicted class for these samples.

V. CONCLUSIONS AND FUTURE WORK

In this work, we presented a novel approach to automatically
produce drums starting from a bass line. We applied Cycle-
GAN to real bass lines, treated as gray-scale images (mel-
spectrograms), obtaining good ratings, especially if compared
to another image-to-image translation approach (Pix2pix).
Given the novelty of the problem, we proposed a reasonable
procedure to properly evaluate our model outputs. Notwith-
standing the promising results, some critical issues need to
be addressed before a more compelling architecture can be
developed. First and foremost, a larger and cleaner dataset of
source separated songs should be created. In fact, manually
separated tracks always contain a big deal of noise. Moreover,
the model architecture should be further improved to focus on
longer dependencies and to take into account the actual degra-
dation of high frequencies. For example, our pipeline could
be extended to include some recent work on quality-aware
image-to-image translation networks [57], and spatial attention
generative adversarial networks [58]. Finally, a certain degree
of interaction and randomness should be inserted to make the
model less deterministic and to give creators some control
over the sample generation. Our contribution is nonetheless
a first step toward more realistic and useful automatic music
arrangement systems and we believe that further significant
steps could be made to reach the final goal of human-level
automatic music arrangement production. Moreover, this task
moves towards the direction of automatic music arrangement
(the same methodology could possibly be extended, in future,
to more complex domains, such as voice or guitar or the whole
song). Already now software like Melodyne [59], [60] delivers
producers a powerful user interface to directly modify and
adjust a spectrogram-based representation of audio signals to

correct, perfect, reshape and restructure vocals, samples and
recordings of all kinds. It is not unlikely that in the future
artists and composers will start creating their music almost
like they were drawing.
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7. SUBJECTIVE EVALUATION

With an online study, we solicited 22 anonymous volun-
teers to rate the result for 3 out of 15 random drumless
tracks (each 23.8 seconds) from the test split. Each time, a
volunteer listened to a drumless tracks (x7) first, and then
(in random orders) the mixture (i.e., x* + x7) containing
drum samples generated by four different models, plus the
real human-made one (to set a high anchor). The volun-
teer then rated them in the following aspects on a 5-point
Likert scale: rhythmic consistency between the drumless
input and generated drums; stylistic consistency concern-
ing the imbre and arrangement of the drumless input and
generated drums; audio quality and rhythmic stability
(whether the drummer follows a steady tempo) of the gen-
erated drum; and overall perceptual impression.

The mean opinion scores (MOS) in Table 1 show that
seqZseqg+beat (low) consistently outperforms the
others, validating the effectiveness of using both the drum-
less codes and beat conditions. decoder+beat (low)
performs consistently the second best, outperforming the
two models without beat information significantly in three
aspects according to paired t-test (p-value < 0.035), val-
idating again the importance of the beat-aware module.
Complementing Section 6, the MOS result suggests that
the beat conditions seem more important than the drum-
less codes, though the best result is obtained with both.

Figure 5 further demonstrates that, given the same in-
put, our model can generate multiple accompaniments with
diversity in both beat and timbre. Diversity is an interest-
ing aspect that is hard to evaluate, but it is desirable as there
is no single golden drum accompaniment for a song. This
may also explain why the F1 scores in Table 1 seem low.
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Output of Mel Spectrogram

Figure 5: Two sets of three different generated samples by
the same model given the same beat condition embedding.

Verbal feedbacks from the subjects confirm that our best
model generates drum accompaniment that is rhythmically
and stylistically consistent with the input, especially for
band music or music with heavy use of bass. However,
the model still has limits. At times the model generates to-
tal silence, though it can be avoided by sampling the LM
again. The model may struggle to change its tempo going
through different sections of a song. Moreover, the gener-
ation might be out-of-sync with the input in the beginning
few seconds, until the model gets sutficient context. Please
visit the demo page for various examples.

8. CONCLUSION

We have presented JukeDrummer, a novel audio-to-audio
extension of OpenAl’s JukeBox model capable of adding
the drum part of a drumfree recording in the audio domain.
To our knowledge, this represents the first attempt to audio-
domain generation conditioned on drumless mixed audio.
With objective and subjective evaluations, we validated the
effectiveness of the customized VQ-VAE plus the seq2seq
Transformer design, and the proposed beat-aware module.
Among the beat conditions, we found that the low-level
embeddings work the best. Future work can be done to
further improve the language model (LM), and to extend
our work to other audio-to-audio generation tasks.

JUKEDRUMMER: CONDITIONAL BEAT-AWARE AUDIO-DOMAIN
DRUM ACCOMPANIMENT GENERATION VIA TRANSFORMER VQ-VAE

Yueh-Kao Wu Ching-Yu Chiu Yi-Hsuan Yang
Academia Sinica National Cheng Kung University Taiwan Al Labs
vk.lego09@gmail.com x2009971@gmail.com vhyang@ailabs.tw

l. The input data (MIDI-like events)
represents drum hits as discrete symbols.
Fine-grained timing variations (micro-
timing, rubato, accelerando) are not
explicitly captured.

As a result, the model may generate rigid
patterns that fail to adapt to tempo
fluctuations in different song sections.

Wu, Y.-K.,, Chiu, C.-Y., & Yang, Y.-H. (2022). JukeDrummer: Conditional Beat-
Aware Audio-Domain Drum Accompaniment Generation via Transformer
VQ-VAE. In Proceedings of the 23rd International Society for Music
Information Retrieval Conference (ISMIR), Bengaluru, India.
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The ML Model uses a 2-bar attention spanin the

Transformer-based drum accompaniment model
limits its ability to recognize long-term musical
structures like verses and choruses, leading to
repetitive, disjointed patterns. Since Transformers
process input in fixed-length windows and lack
recurrence, the model does not retain memory of
previous sections.

Haki, B., Nieto, M., Pelinski, T., & Jorda, S. (2022). Real-Time Drum Accompaniment Using
Transformer Architecture. In Proceedings of the 3rd Conference on Al Music Creativity
(AIMCQ), Barcelona, Spain.

For this work, we focused on developing a real-time drum generator that continuously accompanies
an instrumentalist. In this context, the generator is required to generate content that "supports” the
instrumental performance. As a result, the generator needs to be continuously aware of the state of
the performance, meaning that it needs to be not only aware of the performance near the time of
generation, but also needs to be aware of the progression of the performance leading up to the time
of generation. The transformer model developed for this work has an attention span of 2-bars. This
means that the generative model in its current state is inherently incapable of taking into account the
events received or generated prior to a given 2-bar segment used for generation. This limited attention
span could potentially lead to fragmented and inconsistent generations and hence significantly limit
the experience of the user with the system.

"Detailed analysis results: https://wandb.ai/mmil_upf/AIMC2022/reports/Analysis- - VmlldzoyMzIyNjEx

During the design stage of the work, we were aware of this problem, however, as previously mentioned,
the intention of this work was to investigate the effectiveness of a "bare minimum" transformer in
a real-time accompaniment setting similar to the accompaniment setting shown in Figure 1. As
such, we strictly decided to base our initial experiments on a short-term fixed span transformer,
and if proven successful, in the future iterations incrementally expand the attention span and the
memory of the network. To improve this issue, however, instead of modifying the network to have
long-term memory, we decided to provide the model with a summary of past events memorized
in the input buffer. Perhaps the simplest, yet highly effective, way of achieving this approach is
through "over-dubbing” the previously played performed grooves, rather than providing the model
with only two bars of performed groove leading up to the time of generation. With this approach,




GAP

DRAWBACKS OF Al/ML MODELS

I.Models tend to give repetitive patterns.
2.Most models struggle to maintain long-term coherence and
structural integrity in generated music.
3.Current research models display an inability to generate

creative fills and dynamics which fit the structure of the song.
4.Models often perform poorly in complex genre’'s such as rock,

metal, and jazz.

5.Many models require MIDI input, which represents music as
discrete events without capturing continuous audio nuances,
timbre, or symbolic expressions, leading to limitationsin
realism, timing accuracy, and musical depth.
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DATASET COLLECTION &

AUGMENTAION

e Pitch Shifting: Shifted pitch by -2 to 2
semitones using librosa

e Time Stretching & Speed Variation: Altered

playback speed by 0.8 to 1.2 times with pydub

710 rock/metal ©

songs (.wav)

mask small sections of the Guitar SSM to

encourage the model to infer missing

rhythmic cues — useful for complex

transitions.



MName Contributing artists | Album

' 30secondstoMars-Attack

B 30secondstomars-the kil

. 88-5onsandDaughters

B Abnormality-Visions

B ACDC-LetThereBeRock

B Acro-Brats-DayLate,DollarShort

' Aerosmith-TrainKeptA-Rollin{cover)
B Af-GirlsNotGrey

B AlanisMorissette-YouOughtaKnow
B AliceinChains-ManintheBox

B All-AmericanRejects-DirtyLittleSecret
B All-AmericanRejects-MoveAlong

B AlimanBrothersBand-RamblinMan
B AllThatRemains-Chiron

B AlfhaRemains Thiscaling
B AllThatRemains-TwoWeeks

B AnarchyClub-BloodDoll

B AnarchyClub-GetClean

. AngelsandAirwaves-ItHurts

B AuthorityZero-NoRegrets

B AvengedSevenfold-Afterlife

B AvengedSevenfold-AlmostEasy
. AvengedSevenfold-CriticalAcclaim

B BadCompany-ShootingStar
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DATA PREPROCCESSING

Audio Preprocessing
e Audio separation into drum.wav and guitar.wav using demucs.
e Trimming Silence: If silence is present, remove silent parts to focus
on relevant content, otherwise remove trailing part.
 Normalization: Ensure consistent audio amplitude levels.
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FEATURE EXTRACTION

l. Mel Spectrogram Generation
e Short-Time Fourier Transform (STFT): Converts audio to the frequency domain:
o Instead of analyzing the entire signal at once, STFT applies a sliding window
(2048 samples =~ 46ms at 44.1kHz sample rate) across the signal.
o Each frame is overlapping (512 samples step size/hop length) to maintain smooth
transitions.
2. Self-Similarity Matrix (SSM) Computation
o Calculate SSM: Measure similarity between Mel spectrogram frames
o Using cosine similarity



Boulevard-0Of-
Broken-...ms.mp3

(Source separation using Demucs)

drums.wav
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SELF SIMILARITY MATRIX
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SOLUTION ENHANCEMENT STRATEGY

| Custom Dataset Creation: Extracts drum and guitar components from existing tracks
to expand paired training data.

2 SSM Integration: Provides explicit structural information about repeated sections
and transitions, ensuring generated drum patterns align with the song's structure.

3 Transformer Capabilities: Excels at capturing long-term dependencies in sequences,
maintaining coherence across extended musical compositions.
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EVALUATION

MAE: Measures the average absolute difference between predicted and true

values.
MSE: Measures the average of squared differences, penalizing larger errors

more heavily.
Cosine Similarity: Measures the directional similarity between the predicted

and true spectrogram vectors.
SSIM: Measures perceptual similarity by comparing structural patterns and local
contrasts in two images.



MODEL 1

SimpleTransformer

e Predicts drum Mel spectrogram and SSM from guitar Mel spectrogram and SSM
e Treats input as a 2-channel image

o Channel | = Guitar Mel

o Channel 2 = Guitar SSM

e Uses ashallow Transformer encoder over flattened image features

Data Handling
Input/Output Shapes
e Input > 2 x 128 x 128 (Guitar Mel + Guitar SSM)
e OQutput > 2 x 128 x 128 (Drum Mel + Drum SSM)
Preprocessing Steps
e Load full song Mel and SSM files
e Resize to 128 x 128 using adaptive avg_pool2d
e Normalize each sample with min-max scaling

21
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MODEL 1

SimpleTransformer

Limitations

No segmenting

-> Entire song compressed into a single 128x128 frame, aggressive downsampling
may blur transients, fills, or quick changes

-> Loses temporal progression and rhythmic development

No modality-specific branches

-> Guitar Mel and SSM passed through a shared encoder

-> Fails to capture distinct structural vs spectral patterns

No positional encoding

- Transformer receives tokens without time/frame context

-> Reduces ability to model global structure or rhythmic alignment




Ground Truth: Drum SSM Predicted: Drum SSM

Test MSE: ©.06324
Test MAE : ©0.0983

Test Cosine Similarity : -8.1383
Test SS5IM : ©.684



MODEL 2

DrumTransformer (Segment-wise, Dual-Encoder)

e Predicts drum Mel spectrogram and SSM from guitar Mel spectrogram and SSM
e Uses separate convolutional encoders for Mel and SSM

e Combines them using positional encoding

e Passes through a transformer encoder

e Outputs predicted Mel + SSM via two separate decoder heads

Data Handling (Preprocessing Steps)
e Segmented Input Strategy -Extract segments using a sliding window
e Each full-length song is split into overlapping segments:
o 30-second intervals
o 22-second stride
e ~|280-frame windows downsampled to 128 x 128 using adaptive_avg_pool2d
e Normalize each segment with min-max scaling

24
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MODEL 2

DrumTransformer (Segment-wise, Dual-Encoder)

Limitations
e Fixed input resolution (128x128) still imposes compression => may blur fast

drum events
e Adaptive pooling discards high-resolution structure - prevents the model

from learning how to downsample
e Prediction compresses 30 seconds of audio into 128 frames = leads to

temporal resolution loss
e No decoder recurrence — each segment is processed independently,

ignoring global song context




MODEL 2

GT Drum Mel Pred Drum Mel

Test MSE: ©.124
Test MAE : 0.2054

Test Cosine Similarity : @.216
Test SSIM : ©.8474

WL L LA S

GT Drum S5M Pred Drum S5M




MODEL 3

DrumTransformer (Input mel - 128*T - 15s Segments, SSM-Guided)

e Predict the Mel spectrogram of the drum track of size (128*T) using:
o Guitar's Mel spectrogram (128*T) - CNN - Tokens

o Guitar's Self-Similarity Matrix (SSM) = Interp to 64x64 > CNN - Tokens
o Concat - Positional Encoding = Transformer = Linear - Drum Mel (128xT)

Data Handling (Preprocessing Steps)
e Splits full-length tracks into:
o |5-second segments (~128 frames)
o With IlI-second stride (~64 frames)
e Feeds each segment to the model one by one
e Improves training diversity by covering full song with overlap

27



MODEL 3

DrumTransformer (Input mel - 128*T - 15s Segments, SSM-Guided)

SSM Downsampling via Interpolation
e Each I5secs SSM = downsampled to 64x64
e Uses F.interpolate with bilinear mode
e Provides structural cues to the mel spectogram while cutting computation

Dual CNN-Based Encoders
e Separate encoders for:
o Guitar Mel spectrogram
o Guitar SSM
e Learns modality-specific features:
o Local spectral patterns (Mel)
o Structural repetition and form (SSM)

28



MODEL 3

DrumTransformer (Input mel - 128*T - 15s Segments, SSM-Guided)

Transformer with Positional Encoding

e Outputs from both encoders are:
o Flattened -> Tokenized
o Concatenated - Combined into one sequence

e Uses sinusoidal positional encoding

e Passed to Transformer Encoder for joint modeling of:
o Temporal progression (Mel)
o Structural alignment (SSM)

29



CHALLENGES

e Limited Paired Dataset
o The availability of cleanly paired guitar and drum tracks was limited,
restricting the model’s generalization capacity.
e Manual preprocessing (e.g., Mel spectrograms, SSMs) further reduced

usable data due to noise or alignment issues.

e High Memory Footprint of Transformers
o Processing full-resolution spectrograms (128xT) and especially SSMs
(TxT, e.g., 1250x1250) consumed excessive GPU memory.
o Standard self-attention scales quadratically with input size, limiting

batch sizes and input length.



CHALLENGES

e Segmented Training Trade-offs
o Dividing audio into smaller chunks (e.g., 128x128 Mel frames) helped
reduce memory usage but introduced discontinuities at segment
boundaries, harming temporal consistency.
e Inefficient SSM Encoding
o Patch-based encoding for SSMs caused memory overflows on GPU.
o Switching to interpolation-based downsampling helped but reduced
structural detail fidelity.
e Long Training Times
o Due to large input sizes and model complexity, training even for a few

epochs required long runtimes, discouraging iterative experimentation.



DEPLOYMENT

e Jam Assistance: Automatically adds expressive drum tracks to solo
guitar performances, making solo jamming feel like a full-band
experience.

e Practice: Generate dynamic drum tracks for practice sessions.

e Give the drummer a basic groove to build on when there's a creative
block.

e Songwriting Aid: Provides a foundational drum layer to help composers
sketch new song ideas quickly and intuitively.

e Can be deployed as a web app, Jupyter interface, or DAW plugin for ease
of access.

32
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SCALING CHALLENGES

High GPU memory usage due to large Mel and SSM input sizes (e.g., 128xT,
TxT).

Splitting songs into overlapping segments increases inference time.
Real-time inference is not yet supported; model optimization may be
needed.

Limited dataset generalization — the model is trained on clean rock/metal
tracks and may underperform on noisy or genre-diverse input.

Handling large .npy files for Mel and SSM features at scale can lead to
significant disk, RAM, and 1/0 bandwidth pressure.
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